1. If $1, \omega, \omega^{2},----, \omega^{9}$ are the $10^{\text {th }}$ roots of unity, then $(1+\omega)\left(1+\omega^{2}\right)----\left(1+\omega^{9}\right)$ is
A) 1
B) -1
C) 10
D) 0
2. If $\left(\frac{1+i}{1-i}\right)^{50}=a+i b$, then
A) $\mathrm{a}=-1, \mathrm{~b}=0$
B) $\quad \mathrm{a}=0, \mathrm{~b}=-1$
C) $\mathrm{a}=1, \mathrm{~b}=0$
D) $\quad a=0, b=1$
3. Find the integral values for which the quadratic equation $(x-a)(x-10)=-1$ has integral roots
A) 12
B) 8
C) 12 or 8
D) 12 and 8
4. The system of linear equations $3 x+2 y+z=3,2 x+y+z=0,6 x+2 y+4 z=6$ is
A) Inconsistent
B) Consistent and has a unique solution
C) Consistent and has infinite number of solutions
D) Consistent and has three solutions
5. If α and β are the roots of the equation $2 x^{2}-a x+b=0$, then the equation whose roots are 2α and 2β is
A) $\mathrm{x}^{2}-2 \mathrm{ax}+4 \mathrm{~b}=0$
B) $\quad 2 x^{2}-a x+2 b=0$
C) $\mathrm{x}^{2}-\mathrm{ax}+\mathrm{b}=0$
D) $x^{2}-a x+2 b=0$
6. If $\mathrm{n}=\mathrm{mC}_{2}$, then the value of nC_{2} is
A) $(\mathrm{m}+1) \mathrm{C}_{4}$
B) $\quad 3\left((\mathrm{~m}-1) \mathrm{C}_{4}\right)$
C) $(m+2) C_{4}$
D) $\quad 3\left((\mathrm{~m}+1) \mathrm{C}_{4}\right)$
7. If $\mathrm{A}=\{1,2,3,4\}$, then the number of mappings from A into A whose range set contains two or more elements is
A) 256
B) 252
C) 16
D) 240
8. The domain of $y=\sin ^{-1}\left(\frac{x-3}{2}\right)-\log _{10}(4-x)$ is
A) $(-\infty, 4)$
B) $[1,4)$
C) $(-\infty, 3)$
D) $[3,4]$
9. The inverse of the function $y=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}$ is given by
A) $\quad \frac{1}{2} \log _{\mathrm{e}}(2 \mathrm{x}-1)$
B) $\quad \frac{1}{2} \log _{\mathrm{e}}(2-\mathrm{x})$
C) $\quad \frac{1}{2} \log _{e}\left(\frac{\mathrm{x}+1}{\mathrm{x}-1}\right)$
D) $\quad \frac{1}{2} \log _{e}\left(\frac{x-1}{x+1}\right)$
10. If A is the matrix $\left[\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right]$ then A^{50} is
A) -I
B) I
C) A
D) $\quad-\mathrm{A}$
11. The points $(1,2)$ and $(5,2)$ are two vertices of a rectangle. If the other two vertices lie on the straight line $y=3 x+c$, then the value of c is
A) -5
B) 2
C) 3
D) $\quad-7$
12. The number of common tangents to the circles $x^{2}+y^{2}+2 x-2 y+1=0$ and $x^{2}+y^{2}-2 x-2 y+1=0 \quad$ is
A) 1
B) 2
C) 3
D) 0
13. The area bounded by the curves $x=0, y=0$ and $2 x+5 y=1$ in square units is
A) $\frac{1}{20}$
B) $\frac{1}{10}$
C) 10
D) 5
14. If $2 x+y-2 z=3$ and $3 x+4 y+5 z=3$ are two planes P_{1} andP P_{2} respectively, then the line $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$
A) Is parallel to P_{1} but not perpendicular to P_{2}
B) Is perpendicular to P_{2} but not parallel to P_{1}
C) Is parallel to P_{1} and is perpendicular to P_{2}
D) Is perpendicular to P_{1} and is parallel to P_{2}
15. The centre and radius of the sphere $x^{2}+y^{2}+z^{2}-2 x+6 y+4 z-35=0$ are
A) $(1,-3,-2)$ and 7
B) $(1,3,-2)$ and 5
C) $(-1,3,2)$ and 7
D) $(1,-3,2)$ and 7
16. If the line $y=2 x+c$ is a tangent to the parabola $y^{2}=4 a x$, then
A) $a+c=2$
B) $\quad \mathrm{ac}=2$
C) $\mathrm{c}=2 \mathrm{a}$
D) $a=2 c$
17. $\lim _{x \rightarrow 0}\left(\frac{1+7 x^{2}}{1+5 x^{2}}\right)^{1 / x^{2}}$ is
A) $\frac{7}{5}$
B) e^{2}
C) 1
D) 0
18. If $x e^{x y}=y+\sin ^{2} x$, then $\frac{d y}{d x}$ at $(0,0)$ is equal to
A) 0
B) 1
C) -1
D) e
19. The area included between the curves $\mathrm{y}=\mathrm{e}^{2 \mathrm{x}}$ and $\mathrm{y}=\mathrm{e}^{-2 \mathrm{x}}$ and the lines $\mathrm{x}=0$ and $x=1$ is
A) $e^{2}+e^{-2}$
B) $\frac{\left(\mathrm{e}+\mathrm{e}^{-1}\right)^{2}}{2}$
C) $\quad \frac{\left(\mathrm{e}-\mathrm{e}^{-1}\right)^{2}}{2}$
D) $\frac{e^{2}+e^{-2}}{2}$
20. The value of the integral $\int_{1}^{4}(|x-3|+|1-x|) d x$ is
A) 7
B) 8
C) 12
D) 4
21. $\lim _{\mathrm{n} \rightarrow \infty}\left(1+\frac{1}{\mathrm{n}}\right)^{\mathrm{n}}$ is
A) 1
B) 0
C) e
D) $\quad \infty$
22. The radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{z^{n!}}{n!}$ is
A) 1
B) $\quad \infty$
C) $\frac{1}{2}$
D) 2
23. Let the function f be defined on the set of real numbers Rby

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}
\mathrm{x}^{3}, \text { for } 0 \leq \mathrm{x} \leq 1 \\
\mathrm{x}^{2}, \text { for }-1 \leq \mathrm{x}<0 \\
1, \text { otherwise }
\end{array}\right.
$$

Then the set of points at which f is not differentiable is
A) $\quad\{-1,0,1\}$
B) $\{1,-1\}$
C) $\{0,1\}$
D) $\{-1,0\}$
24. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!}$ is
A) Absolutely convergent
B) Convergent, but not absolutely convergent
C) Divergent and diverges to infinity
D) Oscillating
25. Let f be defined on \mathbf{R} by
$f(x)=\left\{\begin{array}{l}0, \text { if } x \text { is rational } \\ x, \text { otherwise }\end{array}\right.$
Then the Lebesgue integral $\int_{0}^{1} \mathrm{fd}$ has the value
A) 2
B) $1 / 2$
C) 0
D) 1

26 Let f and α be defined on $[0,1]$ by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ and $\alpha(\mathrm{x})=\mathrm{x}^{3}$. Then the Riemann Stieltjes integral $\int_{0}^{1} \mathrm{fd} \alpha$ has the value
A) $1 / 2$
B) $3 / 5$
C) $1 / 3$
D) $2 / 5$
27. Which of the following is not a property of the Lebesgue measure?
A) Countable sub additivity
B) Countable additivity
C) Monotonicity
D) Non - negativity
28. Let E be a subset of \mathbf{R} with Lebesgue outer measure zero ie. $\mathrm{m}^{*}(\mathrm{E})=0$. Then which of the following statements is not necessarily true?
A) E is measurable
B) E is countable
C) If A is any subset of \mathbf{R}, then $m^{*}(A \cup E)=m^{*}(A)$
D) Every subset of E is measurable
29. The residue of $\frac{\sin z}{\mathrm{z}^{2}}$ at $\mathrm{z}=0$, is
A) 0
B) 1
C) $1 / 2$
D) $1 / 3$
30. The singularity of the function $f(z)=-1 / z+\sin 1 / z$ at $z=0$, is
A) A simple pole
B) A pole of order 2
C) An essential singularity
D) A removable singularity
31. Suppose f has an isolated singularity at $z=0$. If $z=0$ is a simple pole of f, then $\lim _{z \rightarrow 0} z f(z)$
A) Is finite and non-zero
B) Is zero
C) Is infinity
D) Does not exist
32. The value of the integral
$\int \frac{\mathrm{dz}}{\mathrm{z}^{2}-4 \mathrm{z}+3}$ where $\gamma(\mathrm{t})=2 e^{\text {it }}, 0 \leq \mathrm{t} \leq 2 \pi$ is
A) $2 \pi i$
B) $\quad-\pi \mathrm{i}$
C) $\quad \pi \mathrm{i}$
D) 0
33. Let $\gamma(\mathrm{t})=3 \mathrm{e}^{\mathrm{it}}, 0 \leq \mathrm{t} \leq 4 \pi$. Then $\int_{\gamma} \frac{\mathrm{dz}}{z-2}$ has the value
A) 0
B) $\quad 2 \pi i$
C) $\quad-2 \pi \mathrm{i}$
D) $4 \pi \mathrm{i}$
34. Let γ be the positively oriented rectangular path with vertices $0,1,1+\mathrm{i}$, i. Then $\int_{\gamma} z^{2} d z$ is equal to
A) $1 / 4$
B) 0
C) 1
D) $1 / 3$
35. Which of the following Mobius transformation maps the open unit disk $\{\mathrm{z}:|\mathrm{z}|<1\}$ onto itself
A) $\mathrm{T}_{1}(\mathrm{z})=\frac{2 \mathrm{z}-1}{2-\mathrm{z}}$
B) $\quad T_{2}(z)=\frac{z-2}{z-3}$
C) $\quad T_{3}(z)=\frac{3 z-2}{1-z}$
D) $\mathrm{T}_{4}(\mathrm{z})=\frac{\mathrm{z}+1}{\mathrm{z}-1}$
36. Let f be a non constant analytic function on a region G . Then from the following statements pick the one which is incorrect?
A) f is infinitely differentiable on G
B) $\quad \mathrm{f}(\mathrm{G})$ is open
C) fattains its maximum on G
D) The set of zeros of f in G has no limit point in G.
37. The coefficient of $\frac{1}{z}$ in the Laurent series expansion of $f(z)=\frac{1}{z(z-1)}$ in the region $0<|z|<1$ is
A) 0
B) 1
C) -1
D) 2
38. There exists no analytic branch of the logarithm in the region
A) $\quad\{\mathrm{z}: \operatorname{Re} \mathrm{z}>0\}$
B) $\quad\{\mathrm{z}: \operatorname{Im} \mathrm{z}>0\}$
C) $\quad\{z:|z-1|<1\}$
D) $\quad\{\mathrm{z}:|\mathrm{z}|>1\}$
39. Which of the following regions is connected, but not simply connected?
A) $\quad\{\mathrm{z}:|\mathrm{z}|<1\}$
B) $\{\mathrm{z}:|\mathrm{z}|>1\}$
C) $\quad\{z:|z-1|+|z+1|<2\}$
D) $\quad\{\mathrm{z}: \operatorname{Re} \mathrm{z}>0\}$
40. Let f be an analytic function on a region G. Let $\mathrm{U}=\operatorname{Re} \mathrm{f}$ and $\mathrm{V}=\operatorname{Imf}$. Then which of the following functions is not necessarily harmonic in G ?
A) U
B) U^{2}
C) $U^{2}-V^{2}$
D) UV
41. Let Z be the ring of integers. Which of the following values of m and n gives $\mathrm{mZ}+\mathrm{nZ}=\mathrm{Z}$.
A) $\mathrm{m}=2, \mathrm{n}=6$
B) $\mathrm{m}=3, \mathrm{n}=6$
C) $m=4, n=6$
D) $\mathrm{m}=5, \mathrm{n}=6$
42. Let $R[x]$ be the ring of polynomials over the reals. Let $f(x)=2 x+3$ and $g(x)=2 x^{2}$ +3 . Let I be the ideal generated by $f(x)$ and J be the ideal generated by $g(x)$. Then which of the following is true?
A) $\quad \mathrm{I} \subseteq \mathrm{J}$
B) $\mathrm{J} \subseteq \mathrm{I}$
C) $\quad \mathrm{I}+\mathrm{J}=\mathrm{R}[\mathrm{x}]$
D) $\quad I \cap J=\phi$
43. Let $\mathrm{R}=\mathrm{Z}_{12}$ be the ring of integers $\bmod 12$. Let A be the ideal generated by 4 and B be the ideal generated by 6 . Then which of the following holds?
A) $\quad \mathrm{R} / \mathrm{A}$ is a field
B) $\quad R / B$ is a field
C) $\quad R /(A+B)$ is a field
D) $\quad R /(A \cap B)$ is a field
44. Which of the following is an irreducible polynomial in $\mathrm{Z}_{2}[\mathrm{x}]$?
A) $x^{3}+x^{2}+1$
B) $x^{3}+x^{2}+x+1$
C) $x^{4}+x^{2}+x+1$
D) $x^{4}+x^{2}+1$
45. If a, b are divisors of zero in a ring R then which of the following is not necessarily a divisor of zero?
A) $a+b$
B) $a b$
C) a^{2}
D) $a b a$
46. Which of the following pairs of fields are isomorphic?
A) $\quad \mathrm{Q}(\mathrm{i}), \mathrm{Q}(\sqrt{2})$
B) $\quad \mathrm{Q}(\sqrt{2}), \mathrm{Q}(\sqrt{3})$
C) $\quad \mathrm{Q}(\sqrt{2}+\mathrm{i}), \mathrm{Q}(\sqrt{2}-\mathrm{i})$
D) $\quad \mathrm{Q}(\sqrt{2}+\mathrm{i}), \mathrm{Q}(\sqrt{3}+\mathrm{i})$
47. Let $f(x)$ and $g(x)$ be polynomials of degree 4 over a field F. Then which of the following is true always?
A) $\quad \operatorname{deg} f(x)+\operatorname{deg} . g(x)$ is 8
B) $\quad \operatorname{deg} f(x)+$ deg. $g(x)$ is 4
C) $\quad \operatorname{deg} f(x)+\operatorname{deg} . g(x)$ is 3
D) $\quad \operatorname{deg} f(x)+\operatorname{deg} . g(x)$ is less than or equal to 4
48. Which of the following is not an algebraic extension?
A) $\quad \mathrm{Q}(\sqrt{\pi}) \operatorname{over} \mathrm{Q}(\pi)$
B) $\quad \mathrm{Q}(\pi)$ over Q
C) $\mathrm{Q}(\sqrt{5})$ over Q
D) $\quad \mathrm{Q}(\sqrt{2}+1)$ over Q
49. Let E be the splitting field of $\mathrm{x}^{3}-2$ over Q . Then $[\mathrm{E}: \mathrm{Q}]=$
A) 2
B) 3
C) 4
D) 6
50. Let $\{0,1, \alpha, 1+\alpha\}$ be a field of four elements. Then $1+\alpha^{2}=$
A) α
B) $1+\alpha$
C) 0
D) 1
51. Let $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ be a linearly independent set in a vector space. Then which of the following is also a linearly independent set?
A) $\left\{v_{1}, v_{1}+v_{2}, v_{2}+v_{3}+v_{4}, v_{1}+v_{3}+v_{4}\right\}$
B) $\left\{v_{1}, v_{1}+v_{2}, v_{2}+v_{3}+v_{4}, v_{1}+v_{2}+v_{4}\right\}$
C) $\quad\left\{v_{1}+v_{2}, v_{2}+v_{3}, v_{3}+v_{4}, v_{1}+v_{4}\right\}$
D) $\left\{v_{1}+v_{2}, v_{3}+v_{4}, v_{1}+v_{3}+v_{4}, v_{2}+v_{3}+v_{4}\right\}$
52. Consider the system of equations
$2 x+3 y+z+\omega=0$
$3 x-2 y-2 z+2 \omega=0$
$4 x-7 y-5 z+3 \omega=0$. Then the dimension of the space of solutions is
A) 0
B) 1
C) 2
D) 3
53. Which of the following triples of points lie on a straight line?
A) $(0,1),(1,2),(-1,3)$
B) $\quad(0,2),(1,0),(-1,4)$
C) $(1,1),(2,1),(3,2)$
D) $(1,-1),(-1,2),(0,1)$
54. Let $\mathrm{T}: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$ be defined by $\mathrm{T}(\mathrm{x}, \mathrm{y})=(2 \mathrm{x}+\mathrm{y}, \mathrm{x}+2 \mathrm{y})$. Then which of the following is a matrix of T with respect to some basis of R^{2} ?
A) $\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$
B) $\left[\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right]$
C) $\left[\begin{array}{ll}2 & 3 \\ 0 & 2\end{array}\right]$
D) $\left[\begin{array}{ll}3 & 5 \\ 0 & 1\end{array}\right]$
55. Which of the following is a diagonalizable matrix?
A) $\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & -1\end{array}\right]$
B) $\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$
C) $\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$
D) $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$
56. Let S_{4} be the group of all permutations on four symbols. Let $\alpha=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ and $\beta=(12)$. Then the order of the subgroup generated by α and β is
A) 2
B) 3
C) 4
D) 6
57. The number of homomorphisms from the group Z_{10} to the group Z_{12} is
A) 1
B) 2
C) 3
D) 4
58. Let G be the group of quaternion units. Then the order of the centre of G is
A) 1
B) 2
C) 4
D) 8
59. Which of the following is a generator of the group $Z_{5} \mathrm{x}_{12}$?
A) $(2,6)$
B) $(2,3)$
C) $(3,4)$
D)
60. The number of mutually non-isomorphic groups of order 49 is
A) 1
B) 2
C) 3
D) 4
61. Let d denote the sup metric on the set of bounded real valued functions on $[0, \pi]$. Let $f(x)=\sin x$ and $g(x)=\cos x$. Then $d(f, g)=$
A) 0
B) 1
C) $\sqrt{2}$
D) $\frac{1}{\sqrt{2}}$
62. Let A and B be open balls of radius 1 and centre $(0,0)$ and $(1,1)$ respectively in $\mathrm{R} \times \mathrm{R}$ with usual metric. Then which of the following is a point in $\mathrm{A} \cap \mathrm{B}$?
A) $\left(\frac{1}{3}, \frac{1}{3}\right)$
B) $\left(\frac{1}{4}, \frac{1}{4}\right)$
C) $\left(\frac{3}{4}, \frac{3}{4}\right)$
D) $\left(\frac{1}{6}, \frac{1}{6}\right)$
63. Let τ be the topology on the set R of reals consisting of R, ϕ and all intervals of the form (a, b) where $a<0$ and $b>0$. Then the closure of $[0,1]$ in this topology is
A) $[0,1]$
B) $(-\infty, 1]$
C) $[0, \infty)$
D) $\quad R$
64. Which of the following is a compact subset of the real line?
A) $\left\{0,1, \frac{1}{2}, \frac{1}{3},--\right\}$
B) $\quad(0,1) \cup(1,2)$
C) $[0, \infty)$
D) $(0, \infty)$
65. Let Q be the subspace of rationals of the real line R. Let $f: R \rightarrow Q$ be a continuous function. Then which of the following holds?
A) $\mathrm{f}(1)>\mathrm{f}(2)$
B) $\quad \mathrm{f}(1)>\mathrm{f}(0)$
C) $\quad \mathrm{f}(1)<\mathrm{f}(0)$
D) $\quad \mathrm{f}(1)=\mathrm{f}(0)$
66. Which of the following pairs of spaces ishomeomorphic. Here R is the real line and the subsets given are subspaces of $\mathrm{R} ; \mathrm{N}$ is the set of naturals and Z is the set of integers?
A) $[0,1)$ and $(0,1)$
B) $\quad \mathrm{R}$ and $\mathrm{R} \times \mathrm{R}$
C) $\quad \mathrm{R} \backslash\{0,1\}$ and $\mathrm{R} \backslash\{0\}$
D) $\quad \mathrm{R} \backslash \mathrm{N}$ and $\mathrm{R} \backslash \mathrm{Z}$
67. Let $\mathrm{X}=\{1,2,3,4,5\}$ and $\tau=\{\mathrm{X}, \phi,\{1,2,3\},\{4,5\}\}$. Let R be the real line. Which of the following is a continuous function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{R}$?
A) $\mathrm{f}(1)=\mathrm{f}(2)=0, \mathrm{f}(3)=\mathrm{f}(4)=\mathrm{f}(5)=1$
B) $\mathrm{f}(1)=\mathrm{f}(2)=\mathrm{f}(3)=0, \mathrm{f}(4)=\mathrm{f}(5)=2$
C) $\quad \mathrm{f}(1)=\mathrm{f}(2)=0, \mathrm{f}(3)=\mathrm{f}(4)=1, \mathrm{f}(5)=2$
D) $\quad \mathrm{f}(1)=0, \mathrm{f}(2)=1, \mathrm{f}(3)=\mathrm{f}(4)=\mathrm{f}(5)=2$
68. Which of the following is not a continuous image of the real line?
A) The open interval $(0,1)$
B) The closed interval $[0,1]$
C) The subspace $\{\mathrm{x}: 0<|\mathrm{x}|<1\}$
D) The subspace $\{\mathrm{x}: \mathrm{x}>0\}$
69. Let $X=\{0,1\}$ be the discrete space and $f: R \rightarrow X$ be defined by
$f(x)=\left\{\begin{array}{lll}0 & \text { if } & x \leq 0 \\ 1 & \text { if } & x>0\end{array}\right.$
Let τ be the weak topology on R induced by f. Then which of the following is an open set in (R, τ)?
A) $(0,1)$
B) $[0,1]$
C) $(-\infty, 0]$
D) $[0, \infty)$
70. Which of the following sequence $\left(\mathrm{x}_{\mathrm{n}}\right)$ is a cauchy sequence in the metric space R with discrete metric?
A) $\quad \mathrm{x}_{\mathrm{n}}=\left\{\begin{array}{lll}0 & \text { if } \mathrm{n} \text { is even } \\ 1 & \text { if } \mathrm{n} \text { is odd }\end{array}\right.$
B) $\quad x_{n}=\left\{\begin{array}{l}0 \text { if } n<10 \\ 1 \text { if } n \geq 10\end{array}\right.$
C) $\quad x_{n}=n$ for all n
D) $\quad \mathrm{x}_{\mathrm{n}}=\frac{1}{\mathrm{n}}$ for all n
71. Let V be the normed linear space R^{3} with Euclidean norm and $\mathrm{W}=$ span $\{(1,0,0)$, $(1,1,1)\}$. If $\overline{\mathrm{W}}$ and W^{0} denote respectively the closure and interior of W , then which one of the following is not true?
A) $\overline{\mathrm{W}} \cup \mathrm{W}^{0}=\mathrm{W}$
B) $\quad \overline{\mathrm{W}} \cap \mathrm{W}^{0}=\varnothing$
C) $\overline{\mathrm{W}} \cup \mathrm{W}^{0}=\mathrm{V}$
D) $\overline{\mathrm{W}}+\mathrm{W}^{0}=\mathrm{W}$
72. For $x=(x(1), x(2)) \varepsilon R^{2}$, let $\|x\|_{p}=\left[|x(1)|^{p}+|x(2)|^{p}\right]^{1 / p}$. If $E=\left\{x:\|x\|_{p} \leq 1\right\}$ is not convex, then the possible value of p from the following is
A) $p=1$
B) $p=2$
C) $p=\infty$
D) $p=1 / 2$
73. Let X be the normed linear space ℓ^{2} and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be defined by
$\mathrm{T}:(\mathrm{x}(1), \mathrm{x}(2), \mathrm{x}(3),--)=\left(\mathrm{x}(1), \frac{\mathrm{x}(2)}{2}, \frac{\mathrm{x}(3)}{3},---\right)$ for $\mathrm{x}=(\mathrm{x}(1), \mathrm{x}(2),---)$ in X .
Then which one of the following is not correct?
A) $\quad \mathrm{T}$ is continuous at the origin (zero element)
B) $\quad \mathrm{T}$ is uniformly continuous
C) $\quad T$ is unbounded
D) One of the above is not true
74. Let M be a closed subspace of a normed linear space X . Then X is a Banach space if
A) $\quad \mathrm{X} / \mathrm{M}$ is a Banach space
B) $\quad \mathrm{M}$ is a separable Banach space
C) $\quad \mathrm{M}$ and X are separable spaces
D) $\quad \mathrm{M}$ and X / M are Banach spaces
75. Let X be the normed linear space $\left\{x \varepsilon \ell^{\infty}: x(j)\right.$ converges in $\left.K\right\}$ and $M=\operatorname{span}\{(1$, $0,0,---),(0,1,0,---),(0,0,1,0,--)\}$. Let $F: X \rightarrow X / M$ be the quotient map. If $C_{00}=\left\{x \in \ell^{\infty}: x(j)=0\right.$ for all but finitely many $\left.j\right\}$, then
A) $\quad \mathrm{F}\left(\mathrm{C}_{00}\right)$ is linearly homeomorphic to X / M
B) $\quad \mathrm{F}\left(\mathrm{C}_{00}\right)$ is open in X / M
C) $\quad \mathrm{F}\left(\mathrm{C}_{00}\right)$ is closed in X / M
D) $\quad \mathrm{F}(\mathrm{M})$ is a nonzero subspace of X / M
76. Let H be the complex Hilbert space $L^{2}([0,2 \pi])$. If $\int_{0}^{2 \pi} x(t) e^{i n t} d t=0$ for $x \varepsilon H$ and $\mathrm{n}=0, \pm 1, \pm 2,---$, then
A) $x=0$
B) $\quad \mathrm{x}(\mathrm{t})=1(\mathrm{t})=1$ for $\mathrm{t} \varepsilon[0,2 \pi]$
C) $x(t)=\sin t$
D) $\quad x(t)=e^{-i n t}$
77. Let H be the real Hilbert space R^{2}, $\mathrm{e}_{1}=(1,0)$ and $\mathrm{e}_{2}=(0,1)$. Let $\mathrm{A} \varepsilon B L(\mathrm{H})$ be represented by the matrix $\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$ with respect to the basis $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}\right\}$. If $\mathrm{B}=$ $\left\{\mathrm{A}\left(\mathrm{e}_{1}\right), \mathrm{A}\left(\mathrm{e}_{2}\right)\right\}$ and $\mathrm{B}^{\prime}=\left\{\mathrm{A}^{*}\left(\mathrm{e}_{1}\right), \mathrm{A}^{*}\left(\mathrm{e}_{2}\right)\right\}$ then
A) $\quad \mathrm{B}$ is a basis for H while B^{\prime} is not a basis for H
B) $\quad \mathrm{B}^{\prime}$ is an orthonormal basis for H while B is not an orthonormal basis for H
C) Both B and B^{\prime} are orthonormal basis for H
D) Neither B nor B' is an orthonormal basis for H
78. If $\mid\langle x, y\rangle=\|x\|\|y\|$ for two vectors x, y in an inner product space X, then
A) $\quad x$ and y are linearly independent
B) x and y are linearly dependent
C) $\quad\|x\|=\|y\|$ always
D) $\quad\|x+y\|=\|x-y\|$
79. For x, y ina Hilbert space H, if $\|x\|=2,\|x-y\|=3$ and $\|y\|=5$, then $\|x+y\|$ is
A) 5
B) 4
C) 7
D) 6
80. If x and y are two vectors in a Hilbert space H such that $x ~ \perp y$, then which one of the following is not true?
A) $\quad\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$
B) $\quad\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2}$
C) $\quad \operatorname{Span}\{x\} \perp \operatorname{Span}\{y\}$
D) $\quad \operatorname{Span}\{\mathrm{x}\}^{\perp} \perp \operatorname{Span}\{\mathrm{y}\}^{\perp}$

