- 1. If 1, ω , ω^2 , ----, ω^9 are the 10th roots of unity, then $(1 + \omega) (1 + \omega^2)$ ----- $(1 + \omega^9)$ is A) 1 B) -1 C) 10 D) 0
- 2. If $\left(\frac{1+i}{1-i}\right)^{50} = a + ib$, then A) a = -1, b = 0 B) a = 0, b = -1C) a = 1, b = 0 D) a = 0, b = 1
- 3. Find the integral values for which the quadratic equation (x a) (x 10) = -1 has integral roots

A)	12	B)	8
C)	12 or 8	D)	12 and 8

- 4. The system of linear equations 3x + 2y + z = 3, 2x + y + z = 0, 6x + 2y + 4z = 6 is
 - A) Inconsistent
 - B) Consistent and has a unique solution
 - C) Consistent and has infinite number of solutions
 - D) Consistent and has three solutions
- 5. If α and β are the roots of the equation $2x^2 ax + b = 0$, then the equation whose roots are 2α and 2β is

A)	$x^2 - 2ax + 4b = 0$	B)	$2x^2 - ax + 2b = 0$
C)	$x^2 - ax + b = 0$	D)	$x^2 - ax + 2b = 0$

6.	If $n =$	mC_2 , then the value of nC_2 is		
	A)	$(m + 1) C_4$	B)	$3((m-1)C_4)$
	C)	$(m + 2) C_4$	D)	$3((m+1) C_4)$

- 7. If $A = \{1, 2, 3, 4\}$, then the number of mappings from A into A whose range set contains two or more elements is
 - A)256B)252C)16D)240

8. The domain of
$$y = \sin^{-1}\left(\frac{x-3}{2}\right) - \log_{10}(4-x)$$
 is
A) $(-\infty, 4)$ B) $[1, 4)$
C) $(-\infty, 3)$ D) $[3, 4]$

9. The inverse of the function $y = \frac{e^x + e^{-x}}{e^x - e^{-x}}$ is given by

A) $\frac{1}{2}\log_{e}(2x-1)$ B) $\frac{1}{2}\log_{e}(2-x)$ C) $\frac{1}{2}\log_{e}\left(\frac{x+1}{x-1}\right)$ D) $\frac{1}{2}\log_{e}\left(\frac{x-1}{x+1}\right)$

10. If A is the matrix
$$\begin{bmatrix} i & 0 \\ 0 - i \end{bmatrix}$$
 then A⁵⁰ is
A) - I B) I C) A D) - A

11. The points (1, 2) and (5, 2) are two vertices of a rectangle. If the other two vertices lie on the straight line y = 3x + c, then the value of c is A) -5 B) 2 C) 3 D) -7

12. The number of common tangents to the circles $x^2 + y^2 + 2x - 2y + 1 = 0$ and $x^2 + y^2 - 2x - 2y + 1 = 0$ is A) 1 B) 2 C) 3 D) 0

13. The area bounded by the curves x = 0, y = 0 and 2x + 5y = 1 in square units is

A)
$$\frac{1}{20}$$
 B) $\frac{1}{10}$ C) 10 D) 5

14. If 2x + y - 2z = 3 and 3x + 4y + 5z = 3 are two planes P₁ and P₂ respectively, then the line $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$

- A) Is parallel to P_1 but not perpendicular to P_2
- B) Is perpendicular to P_2 but not parallel to P_1
- C) Is parallel to P_1 and is perpendicular to P_2
- D) Is perpendicular to P_1 and is parallel to P_2

15. The centre and radius of the sphere $x^2 + y^2 + z^2 - 2x + 6y + 4z - 35 = 0$ are A) (1, -3, -2) and 7 B) (1, 3, -2) and 5 C) (-1, 3, 2) and 7 D) (1, -3, 2) and 7

16. If the line y = 2x + c is a tangent to the parabola $y^2 = 4ax$, then A) a + c = 2 B) ac = 2 C) c = 2a D) a = 2c

17.
$$\lim_{x \to 0} 0 \left(\frac{1+7x^2}{1+5x^2} \right)^{1/x^2}$$
 is
A) $\frac{7}{5}$ B) e^2 C) 1 D) 0

18. If
$$xe^{xy} = y + \sin^2 x$$
, then $\frac{dy}{dx}$ at (0, 0) is equal to
A) 0 B) 1 C) -1 D) e

19. The area included between the curves $y = e^{2x}$ and $y = e^{-2x}$ and the lines x = 0 and x = 1 is

A)
$$e^{2} + e^{-2}$$
 B) $\frac{(e + e^{-1})^{2}}{2}$ C) $\frac{(e - e^{-1})^{2}}{2}$ D) $\frac{e^{2} + e^{-2}}{2}$

20. The value of the integral
$$\int_{1}^{4} (||x-3|| + ||x-1|) dx \text{ is } A) \quad 7 \qquad B) \quad 8 \qquad C) \quad 12 \qquad D) \quad 4$$
21.
$$n \rightarrow \infty \left(1 + \frac{1}{n}\right)^{n} \text{ is } A) \quad 1 \qquad B) \quad 0 \qquad C) \quad e \qquad D) \quad \infty$$
22. The radius of convergence of the power series
$$\sum_{n=0}^{\infty} \frac{z^{n!}}{n!} \text{ is } A) \quad 1 \qquad B) \quad \infty \qquad C) \quad \frac{1}{2} \qquad D) \quad 2$$
23. Let the function f be defined on the set of real numbers **R**by
$$f(x) = \begin{cases} x^{3}, \text{ for } 0 \le x \le 1 \\ x^{2}, \text{ for } 1 \le x < 0 \\ 1, \text{ otherwise} \end{cases}$$
Then the set of points at which f is not differentiable is A) \quad \{-1, 0, 1\} \quad B) \quad \{1, -1\} \quad C) \quad \{0, 1\} \quad D) \quad \{-1, 0\}
24. The series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} \text{ is } A \quad A \text{ Absolutely convergent } B \text{ Convergent, but not absolutely convergent } C) \quad Divergent and diverges to infinity D) \quad Oscillating$$
25. Let f be defined on **R**by
$$f(x) = \begin{cases} 0, \text{ if } x \text{ is rational } 1 \\ x, \text{ otherwise} \end{cases}$$
Then the Lebesgue integral
$$\int_{0}^{1} fd$$
 has the value
$$A \quad 2 \qquad B \end{cases} \quad \frac{1}{2} \qquad C \quad 0 \qquad D) \quad 1$$
26 Let f and α be defined on $[0, 1]$ by $f(x) = x^{2}$ and $\alpha(x) = x^{3}$. Then the Riemann – Stieltjes integral
$$\int_{0}^{1} fda$$
 has the value
$$A \quad \frac{1}{2} \qquad B \quad 3/5 \qquad C \quad 1/3 \qquad D \quad 2/5$$

- 27. Which of the following is not a property of the Lebesgue measure?
 - A) Countable sub additivity B) Countable additivity
 - C) Monotonicity D) Non negativity

28. Let E be a subset of **R** with Lebesgue outer measure zero ie. $m^*(E) = 0$. Then which of the following statements is not necessarily true?

- A) E is measurable
- B) E is countable
- C) If A is any subset of **R**, then $m^*(A \cup E) = m^*(A)$
- D) Every subset of E is measurable

29. The residue of
$$\frac{\sin z}{z^2}$$
 at $z = 0$, is
A) 0 B) 1 C) $\frac{1}{2}$ D) 1/3
30. The singularity of the function $f(z) = -1/z + \sin 1/z$ at $z = 0$, is
A) A simple pole B) A pole of order 2
C) An essential singularity D) A removable singularity
31. Suppose f has an isolated singularity at $z = 0$. If $z = 0$ is a simple pole of f then

- 31. Suppose f has an isolated singularity at z = 0. If z = 0 is a simple pole of f, then $\lim_{z \to 0} z f(z)$
 - A) Is finite and non-zeroB) Is zeroC) Is infinityD) Does not exist

32. The value of the integral

$$\int_{\gamma} \frac{dz}{z^2 - 4z + 3} \text{ where } \gamma(t) = 2e^{it}, 0 \le t \le 2\pi \text{ is}$$
A) $2\pi i$ B) $-\pi i$ C) πi D) 0

33. Let $\gamma(t) = 3e^{it}$, $0 \le t \le 4\pi$. Then $\int \frac{dz}{z-2}$ has the value A) 0 B) $2\pi i$ C) $-2\pi i$ D) $4\pi i$

- 34. Let γ be the positively oriented rectangular path with vertices 0, 1, 1+i, i. Then $\int z^2 dz$ is equal to γ A) $\frac{1}{4}$ B) 0 C) 1 D) 1/3
- 35. Which of the following Mobius transformation maps the open unit disk $\{z:|z| < 1\}$ onto itself

A)
$$T_1(z) = \frac{2z - 1}{2 - z}$$

B) $T_2(z) = \frac{z - 2}{z - 3}$
C) $T_3(z) = \frac{3z - 2}{1 - z}$
D) $T_4(z) = \frac{z + 1}{z - 1}$

36.	Let f be a non constant analytic function on a region G. Then from the following
	statements pick the one which is incorrect?

- A) f is infinitely differentiable on G
- B) f(G) is open
- C) f attains its maximum on G
- D) The set of zeros of f in G has no limit point in G.

37. The coefficient of $\frac{1}{z}$ in the Laurent series expansion of $f(z) = \frac{1}{z(z-1)}$ in the region 0 < |z| < 1 is

A)	0	B)	1
C)	-1	D)	2

38. There exists no analytic branch of the logarithm in the region

A)	$\{z : \text{Re } z > 0\}$	B)	$\{z : Im \ z > 0\}$
C)	$\{z : z-1 \le 1\}$	D)	$\{z : z \ge 1\}$

39. Which of the following regions is connected, but not simply connected?

A)	$\{z : z < 1\}$	B)	$\{z : z > 1\}$
C)	$\{z: z-1 + z+1 < 2\}$	D)	$\{z : \text{Re } z > 0\}$

40. Let f be an analytic function on a region G. Let U = Re f and V = Imf. Then which of the following functions is not necessarily harmonic in G?

A)	U	B)	U^2
C)	$U^2 - V^2$	D)	UV

41. Let Z be the ring of integers. Which of the following values of m and n gives mZ + nZ = Z.

A)	m = 2, n = 6	B)	m = 3, n = 6
C)	m = 4, n = 6	D)	m = 5, n = 6

- 42. Let R[x] be the ring of polynomials over the reals. Let f(x) = 2x + 3 and $g(x) = 2x^2 + 3$. Let I be the ideal generated by f(x) and J be the ideal generated by g(x). Then which of the following is true?
 - $\begin{array}{ll} A) & I \subseteq J & B) & J \subseteq I \\ C) & I+J=R[x] & D) & I \cap J=\varphi \end{array}$
- 43. Let $R = Z_{12}$ be the ring of integers mod 12. Let A be the ideal generated by 4 and B be the ideal generated by 6. Then which of the following holds?
 - A) R/A is a field B) R/B is a field
 - C) R/(A+B) is a field D) $R/(A\cap B)$ is a field

44. Which of the following is an irreducible polynomial in $Z_2[x]$?

A)	$x^3 + x^2 + 1$	B)	$x^3 + x^2 + x + 1$
C)	$x^4 + x^2 + x + 1$	D)	$x^4 + x^2 + 1$

If a, b are divisors of zero in a ring R then which of the following is not necessarily 45. a divisor of zero? a^2 C) a + bB) D) ab aba A) Which of the following pairs of fields are isomorphic? 46. $Q(\sqrt{2}), Q(\sqrt{3})$ $Q(i), Q(\sqrt{2})$ B) A) $Q(\sqrt{2}+i), Q(\sqrt{3}+i)$ $Q(\sqrt{2}+i)$, $Q(\sqrt{2}-i)$ D) C) 47. Let f(x) and g(x) be polynomials of degree 4 over a field F. Then which of the following is true always? deg f(x) + deg. g(x) is 8 A) B) $\deg f(x) + \deg g(x)$ is 4 C) $\deg f(x) + \deg g(x)$ is 3 deg f(x) + deg. g(x) is less than or equal to 4 D) 48. Which of the following is not an algebraic extension? $Q(\sqrt{\pi})$ over $Q(\pi)$ B) $Q(\pi)$ over QA) $O(\sqrt{5})$ over O $Q(\sqrt{2}+1)$ over Q D) C) Let E be the splitting field of $x^3 - 2$ over Q. Then [E : Q] = 49. 2 B) 3 A) C) 4 D) 6 Let $\{0, 1, \alpha, 1+\alpha\}$ be a field of four elements. Then $1 + \alpha^2 =$ 50. $1 + \alpha$ B) A) α 0 C) D) 1 51. be a linearly independent set in a vector space. Then which Let $\{v_1, v_2, v_3, v_4\}$ of the following is also a linearly independent set? $\{v_1, v_1 + v_2, v_2 + v_3 + v_4, v_1 + v_3 + v_4\}$ A) B) $\{v_1, v_1 + v_2, v_2 + v_3 + v_4, v_1 + v_2 + v_4\}$ C) $\{v_1 + v_2, v_2 + v_3, v_3 + v_4, v_1 + v_4\}$ $\{v_1 + v_2, v_3 + v_4, v_1 + v_3 + v_4, v_2 + v_3 + v_4\}$ D) 52. Consider the system of equations $2x + 3y + z + \omega = 0$ $3x - 2y - 2z + 2\omega = 0$ $4x - 7y - 5z + 3\omega = 0$. Then the dimension of the space of solutions is 0 A) B) 1 2 3 C) D) Which of the following triples of points lie on a straight line? 53. A) (0, 1), (1, 2), (-1, 3)B) (0, 2), (1, 0), (-1, 4)C) (1, 1), (2, 1), (3, 2)D) (1, -1), (-1, 2), (0, 1)

54. Let $T : R^2 \to R^2$ be defined by T(x,y) = (2x + y, x + 2y). Then which of the following is a matrix of T with respect to some basis of R^2 ?

A)	$\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$	B)	$\begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$
C)	$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$	D)	$\begin{bmatrix} 3 & 5 \\ 0 & 1 \end{bmatrix}$
Whiel	n of the following is a dia	analizable	motriy?
winci	1 of the following is a thag	gonanzaule	mau ix :
			$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$
A)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{bmatrix} 0 & 0 & -1 \end{bmatrix}$		
	$\begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$		$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$
C)	$\begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$	D)	0 1 1

55.

56. Let S₄ be the group of all permutations on four symbols. Let $\alpha = (1 \ 2 \ 3)$ and $\beta = (1 \ 2)$. Then the order of the subgroup generated by α and β is A) 2 B) 3 C) 4 D) 6

57.	The 1	number	of homomorphis	ms	from the grou	ıp Z	$_{10}$ to t	he group Z_{12} is	
	A)	1	B)	2	(C)	3	D)	4

- 58.Let G be the group of quaternion units. Then the order of the centre of G isA)1B)2C)4D)8
- 59. Which of the following is a generator of the group $Z_5 \times Z_{12}$? A) (2, 6) B) (2, 3) C) (3, 4) D) (3, 5)
- 60.The number of mutually non-isomorphic groups of order 49 isA)1B)2C)3D)4
- 61. Let d denote the sup metric on the set of bounded real valued functions on $[0, \pi]$. Let f (x) = sin x and g(x) = cos x. Then d (f,g) =

A) 0 B) 1 C)
$$\sqrt{2}$$
 D) $\frac{1}{\sqrt{2}}$

62. Let A and B be open balls of radius 1 and centre (0, 0) and (1, 1) respectively in R x R with usual metric. Then which of the following is a point in A \cap B?

A)
$$\left(\frac{1}{3}, \frac{1}{3}\right)$$
 B) $\left(\frac{1}{4}, \frac{1}{4}\right)$ C) $\left(\frac{3}{4}, \frac{3}{4}\right)$ D) $\left(\frac{1}{6}, \frac{1}{6}\right)$

63. Let τ be the topology on the set R of reals consisting of R, ϕ and all intervals of the form (a, b) where a < 0 and b >0. Then the closure of [0, 1] in this topology is A) [0,1] B) (- ∞ , 1] C) [0, ∞) D) R

64. Which of the following is a compact subset of the real line?

A)	$\left\{0, 1, \frac{1}{2}, \frac{1}{3}, \cdots\right\}$	B)	(0, 1) U (1, 2)
C)	$[0,\infty)$	D)	$(0,\infty)$

65. Let Q be the subspace of rationals of the real line R. Let $f: R \rightarrow Q$ be a continuous function. Then which of the following holds?

A)	f(1) > f(2)	B)	f(1) > f(0)
C)	f(1) < f(0)	D)	f(1) = f(0)

66. Which of the following pairs of spaces ishomeomorphic. Here R is the real line and the subsets given are subspaces of R; N is the set of naturals and Z is the set of integers?

A)	[0, 1) and $(0, 1)$	B)	R and R x R
C)	$R \setminus \{0, 1\}$ and $R \setminus \{0\}$	D)	$R \setminus N$ and $R \setminus Z$

- 67. Let $X = \{1, 2, 3, 4, 5\}$ and $\zeta = \{X, \phi, \{1, 2, 3\}, \{4, 5\}\}$. Let R be the real line. Which of the following is a continuous function $f : X \rightarrow R$?
 - A) f(1) = f(2) = 0, f(3) = f(4) = f(5) = 1
 - B) f(1) = f(2) = f(3) = 0, f(4) = f(5) = 2
 - C) f(1) = f(2) = 0, f(3) = f(4) = 1, f(5) = 2
 - D) f(1) = 0, f(2) = 1, f(3) = f(4) = f(5) = 2
- 68. Which of the following is not a continuous image of the real line?
 - A) The open interval (0, 1)
 - B) The closed interval [0, 1]
 - C) The subspace $\{x: 0 \le |x| \le 1\}$
 - D) The subspace $\{x: x > 0\}$

69. Let $X = \{0, 1\}$ be the discrete space and f: $R \rightarrow X$ be defined by

 $f(x) = \begin{cases} 0 & \text{if } x \le 0\\ 1 & \text{if } x > 0 \end{cases}$

Let ζ be the weak topology on R induced by f. Then which of the following is an open set in (R, ζ) ?

- A)(0, 1)B)[0, 1]C) $(-\infty, 0]$ D) $[0, \infty)$
- 70. Which of the following sequence (x_n) is a cauchy sequence in the metric space R with discrete metric?

A)	$\mathbf{x}_{n} = \begin{cases} 0 & \text{if } n \text{ is even} \\ 1 & \text{if } n \text{ is odd} \end{cases}$	B)	$\mathbf{x}_{n} = \begin{cases} 0 & \text{if } n < 10\\ 1 & \text{if } n \ge 10 \end{cases}$
C)	$x_n = n$ for all n	D)	$x_n = \frac{1}{n}$ for all n

- 71. Let V be the normed linear space \mathbb{R}^3 with Euclidean norm and W= span {(1,0,0), (1,1,1)}. If \overline{W} and W^0 denote respectively the closure and interior of W, then which one of the following is not true?
 - A) $\overline{W} \cup W^0 = W$ B) $\overline{W} \cap W^0 = \phi$ C) $\overline{W} \cup W^0 = V$ D) $\overline{W} + W^0 = W$

72. For $x = (x(1), x(2)) \in \mathbb{R}^2$, let $||x||_p = ||x(1)|^p + |x(2)|^p |^{1/p}$. If $E = \{x : ||x||_p \le 1\}$ is not convex, then the possible value of p from the following is A) p = 1 B) p = 2

A)

$$p = 1$$
 B)
 $p = 2$

 C)
 $p = \infty$
 D)
 $p = \frac{1}{2}$

73. Let X be the normed linear space ℓ^2 and T : X \rightarrow X be defined by

$$T: (x (1), x(2), x(3), \dots) = \left(x(1), \frac{x(2)}{2}, \frac{x(3)}{3}, \dots \right) \text{for } x = (x (1), x(2), \dots) \text{ in } X.$$

Then which one of the following is not correct?

- A) T is continuous at the origin (zero element)
- B) T is uniformly continuous
- C) T is unbounded
- D) One of the above is not true
- 74. Let M be a closed subspace of a normed linear space X. Then X is a Banach space if
 - A) X_{M} is a Banach space
 - B) M is a separable Banach space
 - C) M and X are separable spaces
 - D) M and $\frac{X}{M}$ are Banach spaces

75. Let X be the normed linear space $\{x \in \ell^{\infty} : x(j) \text{ converges in } K\}$ and $M = \text{span } \{(1, 0, 0, ---), (0, 1, 0, ---), (0, 0, 1, 0, ---)\}$. Let F: $X \rightarrow X_M$ be the quotient map. If $C_{00} = \{x \in \ell^{\infty} : x(j) = 0 \text{ for all but finitely many } j\}$, then

- A) $F(C_{00})$ is linearly homeomorphic to X_{M}
- B) $F(C_{00})$ is open in X_{M}
- C) $F(C_{00})$ is closed in X_{M}
- D) F(M) is a nonzero subspace of X_M

76. Let H be the complex Hilbert space $L^2([0, 2\pi])$. If $\int_0^{2\pi} x(t) e^{int} dt = 0$ for $x \in H$ and $n = 0, \pm 1, \pm 2, ---$, then

A) x = 0C) $x(t) = \sin t$ B) $x(t) = 1 \text{ for } t \in [0, 2\pi]$ D) $x(t) = e^{-int}$ 77. Let H be the real Hilbert space R^2 , $e_1 = (1, 0)$ and $e_2 = (0, 1)$. Let A ε BL(H) be represented by the matrix $\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$ with respect to the basis { e_1, e_2 }. If B =

 $\{A(e_1), A(e_2)\}$ and B' = $\{A^*(e_1), A^*(e_2)\}$ then

- A) B is a basis for H while B' is not a basis for H
- B) B' is an orthonormal basis for H while B is not an orthonormal basis for H
- C) Both B and B' are orthonormal basis for H
- D) Neither B nor B' is an orthonormal basis for H

78. If $|\langle x, y \rangle| = ||x|| ||y||$ for two vectors x, y in an inner product space X, then

- A) x and y are linearly independent
- B) x and y are linearly dependent
- C) $||\mathbf{x}|| = ||\mathbf{y}||$ always
- D) || x + y || = || x y ||

 79.
 For x, y ina Hilbert space H, if ||x|| = 2, ||x - y|| = 3 and ||y|| = 5, then ||x + y|| is

 A)
 5

 B)
 4

 C)
 7

 D)
 6

80. If x and y are two vectors in a Hilbert space H such that $x \perp y$, then which one of the following is not true?

A)	$\ \mathbf{x} + \mathbf{y} \ ^2 = \ \mathbf{x} \ ^2 + \ \mathbf{y} \ ^2$	B)	$\ \mathbf{x} - \mathbf{y} \ ^2 = \ \mathbf{x} \ ^2 + \ \mathbf{y} \ ^2$
C)	Span $\{x\} \perp$ Span $\{y\}$	D)	Span $\{x\}^{\perp} \perp$ Span $\{y\}^{\perp}$
